Noncrossing Sets and a Grassmann Associahedron
نویسندگان
چکیده
We study a natural generalization of the noncrossing relation between pairs of elements in [n] to k-tuples in [n] that was first considered by Petersen et al. [J. Algebra 324(5) (2010), 951–969]. We give an alternative approach to their result that the flag simplicial complex on ([n] k ) induced by this relation is a regular, unimodular and flag triangulation of the order polytope of the poset given by the product [k] × [n − k] of two chains (also called Gelfand–Tsetlin polytope), and that it is the join of a simplex and a sphere (that is, it is a Gorenstein triangulation). We then observe that this already implies the existence of a flag simplicial polytope generalizing the dual associahedron, whose Stanley–Reisner ideal is an initial ideal of the Grassmann–Plücker ideal, while previous constructions of such a polytope did not guarantee flagness nor reduced to the dual associahedron for k = 2. On our way we provide general results about order polytopes and their triangulations. We call the simplicial complex the noncrossing complex, and the polytope derived from it the dual Grassmann associahedron. We extend results of Petersen et al. [J. Algebra 324(5) (2010), 951–969] showing that the noncrossing complex and the Grassmann associahedron naturally reflect the relations between Grassmannians with different parameters, in particular the isomorphism Gk,n ∼= Gn−k,n . Moreover, our approach allows us to show that the adjacency graph of the noncrossing complex admits a natural acyclic orientation that allows us to define a Grassmann– Tamari order on maximal noncrossing families. Finally, we look at the precise relation of the noncrossing complex and the weak separability complex of Leclerc and Zelevinsky [Amer. Math. Soc. Transl. 181(2) (1998), 85–108]; see also Scott [J. Algebra 290(1) (2005), 204–220] among others. We show that the weak separability complex is not only a subcomplex of the noncrossing c © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2017.1 Downloaded from https:/www.cambridge.org/core. IP address: 54.200.109.4, on 25 Feb 2017 at 12:59:32, subject to the Cambridge Core terms F. Santos, C. Stump and V. Welker 2 complex as noted by Petersen et al. [J. Algebra 324(5) (2010), 951–969] but actually its cyclically invariant part. 2010 Mathematics Subject Classification: 52B20 (primary); 06A11 (secondary)
منابع مشابه
Rational Associahedra and Noncrossing Partitions
Each positive rational number x > 0 can be written uniquely as x = a/(b− a) for coprime positive integers 0 < a < b. We will identify x with the pair (a, b). In this paper we define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It is a pure simplicial complex of dimension a − 2, and its maximal faces are counted by the rational Catal...
متن کاملNoncrossing Hypertrees
Hypertrees and noncrossing trees are well-established objects in the combinatorics literature, but the hybrid notion of a noncrossing hypertree has received less attention. In this article I investigate the poset of noncrossing hypertrees as an induced subposet of the hypertree poset. Its dual is the face poset of a simplicial complex, one that can be identified with a generalized cluster compl...
متن کاملAssociahedra via Spines
An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree to...
متن کاملCombinatorial Statistics on Alternating Permutations
We consider two combinatorial statistics on permutations. One is the genus. The other, d̂es, is defined for alternating permutations, as the sum of the number of descents in the subwords formed by the peaks and the valleys. We investigate the distribution of d̂es on genus zero permutations and Baxter permutations. Our qenumerative results relate the d̂es statistic to lattice path enumeration, the ...
متن کاملSets, Lists and Noncrossing Partitions
Partitions of [n] = {1, 2, . . . , n} into sets of lists are counted by sequence A000262 in the On-Line Encyclopedia of Integer Sequences. They are somewhat less numerous than partitions of [n] into lists of sets, A000670. Here we observe that the former are actually equinumerous with partitions of [n] into lists of noncrossing sets and give a bijective proof. We show too that partitions of [n]...
متن کامل